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SECTION 4

TRAPPED RADIATION POP'ULATION

K.W. Chan, D.M. Sawyer, and J.I. Vette,
NASA-Goddard Space Flight Center

4.1 INTRODUCTION

This section contains a description of the charged particles within
the magnetosphere. The emphasis, however, is on those fluxes
found within the stably trapped region since their energetic nature
usually makes them of primary concern to spacecraft designers. A
complete description of a particle population requires a knowledge of
the particle flux and energy spectrum as a function of time, spatial
position, and orientation of the measuring device. In those regions
of the magnetosphere where the particle motion obeys adiabatic in-
variants, the orientation and position variables are connected through
the invariants. Since the particle fluxes depend heavily upon all the

S* variables, and there is no theory to completely unify the diverse be-
havior of these variables, a concise quantitative. treatment is very
difficult. The adiabatic theory (e.g., Reference 1) and the diffusion
theory (e.g., Reference Z) have provided the major framework for
explaining many of the observed phenomena. (Also see Sections 3
and 5.)

A large number of satellite measurements have been made since
the first radiation belt observations in 1958. These have provided

enough data to form a good phenornenological picture of many mag-
netospheric processes. Several books and proceedings of symposia,
as well as review articlez, are a.vallable to tnose interested in be-
coming acquainted with the observations and theories (References 2through 10). Since these contain references to most of the original
work, no attempt is made in this section to provide an extensive bib-

liography. Many general ideas are stated without specific reference.

Unlike the interplanetary medium, the magnetic field within the
magnetosphere is usually strong enough to dominate the particle mo-
tion. This situation is obtained when the magnetic energy denuity
BZ/8ff) exceeds the particle kinetic energy density (nmv /Z). How-

e..'er,. in the magnetosheath region and in parts of the geomagnetic
tail, too balance o. control can fluctuate between particles and fields.

4-1
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Moving inward toward the Earth, the field becomes well ordered and
stable enough to serve as a coordinate system for particle motion.
It is in this region that the natural radiation belt particles reside and
in which the three adiabatic invariants of gyration, bounce, and drift
are well defined.

Within the belts are electrons, protons, and heavier ions with
energies from a few eV in the thermal plasma region to a few MeV
for electrons and to several hundred MeV for protons. Extensive
observations have been made of both the electron and proton popula-
tions. Their different morphological structure and behavior make
it convenient to discuss them in separate subsections. Similarly,
a separate subsection is reserved for the observations of Z - 2 ions.
The final subsection is a brief summary.

4.2 TRAPPED PROTON ENVIRONMENT

4.2.1 Protons with E > 100 KeV

The stable trapping region is defined as that volume of the magne-
tosphere where the drift paths of the particles form closed shells
around the Earth. At L values beyond 5, these shells become no-
ticeably distorted by the asymmetry of the Earth's field, which in
turn is caused by the solar wind pressure. In this region, the local
time becomes important as an additional parameter necessary for
a complete description of the trapped fluxes. Figure 4-1 shows the
trapping regions in the noon to midnight meridian for a model mag-
netosphere with this asymmetry.

Out to the distance of the synchronous orbit near L = 6. 6, the
proton environment can be described, for most purposes, without
tho local time variable. However, Stevens et al. (Reference 11)
have observed a factor-of-four variation in the quiet time fluxes of
0.6- to 3. 3- MeV protons between noon and midnight at L = 6.6.

Sawyer and Vette (Reference 12) have recently (1976) completed
a comprehensive model of the trapped proton environment out to
L = 6. 6 for energies above 100 KeV. This environment can be viewed
as a summary of the many different measurements by numerous in-
vestigators. It is composed of two parts, designated AP8MIN and
AP8MAX, which correspond to solar minimum and solar maximum
conditions, respectively. This division results from the cyclic na-
ture of the timpped flux at low altitudes, which varies in Lorrespon-
dence with the 11-year solar cycle. This variation is discussed later
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in more detail. Figures 4-Z through 4-7 present B-L flux maps of
the AP8MIN and AP8MAX models for six different energies between
0. 1 and 400 MeV. These fluxes are omnidirectional and integral in
energy. AP8MAX differs from AP8MIN for altitudes less than about
1,000 kilometers, and for L values less than Z.9. The limit at L =

2. 9 is the result of insufficient data at higher L values on which to
base any solar-cycle variation. The absolute accuracy of the solar-
cycle effect in the AP8 models is somewhat uncertain since the steep
spatial gradients in the fluxes are difficult to determine accurately
and consistently.

The equatorial distribution of the protons as obtained from the
AP8MIN model is shown in Figure 4-8. It is apparent from the fig-
ure that there is only one proton radiation belt, which is in sharp
contrast to the two-belt structure observed for electrons described
in the next subsection. The flux above 5-MeV peaks within L = 1. 8
and the flux above 0. , MeV peaks at about L : 3.2.

The nature of the AP8MIN omnidirectional integral spectra is
shown in Figures 4-9 through 4-16. Each figure corresponds to one

( ,L value and contains the spectra for several B/Bo values, where Bo
is the equatorial B field value. An inflection point around 30 MeV
in the equatorial spectrum at L = 1.5 is apparent in Figure 4-10.
This is suggestive of different source or loss mechanisms predom-
inating above and below 30 MeV. It is fairly well established that
the source of the higher energy protons is the neutron flux produced
in the atmosphere by incident cosmic rays, and the lower energy
protons are primarily due to radial diffusion transport from more
distant regions of the magnetosphere. It is interesting to note that
the higher energy protons typically have lifetimes of hundreds of
years (Reference 13). Reasonable agreement exists between the
observations of the equatorial proton flux with energies above 10
MeV for L values from 1. 18 to 1. 7, and the solution of an inhomo-
geneous radial diffusion equation with the proper source and loss
terms (References 13 through 16). The same situation does not yet
hold for the remainder of the stable trapping region.

The word stable is not meant to imply the absence of time varia-
tions, as we have already noted with the solar-cycle variations.
These time variations are ultimately related to particles and elec-
tromagnetic waves emitted by the sun as well as to solar magnetic
'field variations which interact with the Earth's magnetic field and
atmosphere. As one looks to higher L values and, correspondingly,
lower energies, time variations generally become more pronounced,

(4-)
: ' ,4-3

"'•"• -' . ... •, ,,, -. wre a .,- .. . . .. . . . , ... . ,, H " "•" - . : -:- ,' ;:, • v " . ... . . . . . -.. . ....... ...---- s



4 January 1977

The mechanism of the proton solar-cycle variation is reasonably
well understood. A cyclic solar emission drives an atmospheric
density variation which causes a corresponding variation in the
fluxes of protons mirroring in the atmosphere at altitudes below
about 1,000 kilometers (References 17 through 19). Observations
of proton fluxes in a narrow range of minimum mirror point altitudes
(designated hMIN) over a period of several years have shown varia-
tions which are consistent with predictions. Figure 4- 17 shows the
time dependence of the omnidirectional, 60-MeV (differential) flhux
at the three hMlN altitudes of 250, 350, and 450 kilometers (Refer-
ence 19). Also shown are the corresponding theoretical predictions.
The good agreement between observations and theory lends consider-
able confidence to our understanding of the basic mechanisms involved.

The extensive coverage of the satellite 1963-38C has provided
particularly useful data regarding long-term time variations for L
values up to 3 (Reference 19). Figures 4-18 through 4-21 show 10-
day averages over 5 years of the 1963-38C proton counting rates in
the energy ranges of 25 to 100 MeV, 8. 2 to 25 MeV, 2.2 to 8. 2 MeV,
and 1. 2 to 2. 2 MeV. Fluxes at energies above Z5 MeV are very sta-
ble for L values less than 2 while some response to major geomagnetic
storms, such as September 1963 and MIay 1967, can be seen at L
2. 2. The lower energies show an observable response to even minor
storms, with decay times on the order of months to years. There
is also some evidence in these figures for long-term decreases in
the fluxes with decay times on the order of 3 to 7 years.

An example of the time behavior of protons at L = 4 (Reference 20)
is shown in Figure 4-22. These curves are for protons mirroring at
the equator with energies above eight threshold values. The curves
labeled A through H correspond to the threshold energies of 98,
134, 180, 345, 513, 775, 1, 140, and 1,700 KeV, respectively. The
curves are displaced to avoid overlap, and the valuus must be mul-
tiplied by 10 raised to thu power -1. 25, -1. 00, -0. 75, -0. 50, -0. 25,
0. 25, 0. 25, and 0. 25 for curves A through H, respectively. The
result is the integral intensity in prctons/cm 2 -sec-ster. Also plot-
ted are the hourly Dst values wlich are magnetic field changes re-
lated to changes in the total energy of particles trapped in the radia-
tion belL (see subsection 4., 2. 2). Some of the variations seen in
these protons represent adiabatic c:hanges consistent with the mag-
netic field changes.

Order of magnitude fluctuations in thi fluxep are observable in
Azur satellite data at L 4. 85 and B 0, 1,7 gau.,i. These proton
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fluxes for energy intervals between 0. 25 to 0.5, 0.5 to 1.0, and 1.0
to 1.65 MeV are shown in Figure 4-23 (Reference 21). Above L = 5,
order-of-rragnitude fluctuations have been observed on time scales
as short as 10 minutes (Reference 22). At the synchronous orbit and
beyond, the particle population exhibits extremely dynamic behavior
(Reference 19). Occasionally, the Earth's magnetospheric boundary
is compressed by the solar wind to less than 6. 6 RE on the noon side,
resulting in the disappearance of the higher energy (I- MeV) trapped
particles. Solar protons also have easy access to the synchronous
region, especially during disturbed times (Reference 23). A more
extensive discussion of time variations for the protons modeled by
AP8 is contained in Reference 12.

4.2.2 Protons with E < 100 KeV

We now turn attention to the observations of protons with energies
less than 100 KeV in the stable trapping region. Increases in the
fluxes of these protons have been thought to be largely responsible
for the decreases of the magnetic field intensities measured at the
Earth's equator during main-phase geomagnetic storms (References
24 and Z5). However, recent observations of ions heavier than pro-
tons and storm particle decay times have cast some doubt on the
identification of those particles as protons. This possibility is dis-
cussed more fully in subsection 4.4.3.

The magnetic activity index Dst is a measure of geomagnetic-storm
field decreases and is, therefore, closely related to the particle in-
creases which constitute the bulk of the storm time ring current. It
is generally believed that the source of these particles is the convec-
tion of plasma sheet protons to low L values (References Z6 and 27).
Since a comprehensive model of the distribution and time dependence
of these fluxes is not currently available, figures from the published
works of various investigators are presented.

Figure 4-24 shows unidirectional differential energy spectra at
the magnetic equator for L values of 4. 5, 5.0, and 6. 0 (Reference
28). The flux values peak near 10 KeV, with intensities of approxi-
mately 1o3 protons/cm?-sec-ster-eV. These data are a composite
of results from the spacecraft OGO 3, Explorer 12, and Mariner 4.
The spectrum below 100 KeV is seen to merge smoothly with obser-
vations above 100 KeV, and an empirical expression which fits the
data is also shown. The fluxes with energies below 50 l.eV were
acquired aboard OGO 3 during June and July 1966, with measure-
ments during two moderate main-phase geomagnetic storms excluded
(Reference U8).

4-5
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The effects of storms o: these low-energy protons can be seen
in Figure 4-25 (Reference 29). These results were acquired during
1800 to Z400 local times aboard the Explorer 45 (S 3 ) satellite in
December 1971. The quantity plotted is two times the proton mass
times the phase space distribution function, which in the nonrelativis-
tic limit is equal to j/E, where j is the equatorial (differential) flux
at 90 degrees pitch angle, in units of protons/cm 2 -sec-ster-KeV,
and E is the energy in KeV. This quantity is plotted as a function
of time at constant energy and at cinnstant first invariant 4 (A = E I/B)
for radial distances between Z. 5 and 5. The storm on 17 December
is evident in the lower energy fluxes and in the Dst index, which is
also shown. Notice that the higher energy particles at constant A
show no intensity decreases in association with the storm main phase,
which is indicative of adiabatic behavior (Reference Z9). Prestormn
particle intensities shown at energies • Z6 KeV are upper limits to
the true intensities at radial distances less than 3. 5 as a result of a
detector background problem. Extensive pitch-angle distributions
for these same data are contained in Reference 30.

4.3 TRAPPED ELECTRON ENVIRONMENT

4.3. 1 Morphology of Energetic Electrons
(E x 40 KeV) in the Trapping Region
of the Geomagnetic Field

The electron population in the terrestrial environment is found
&' to encompass two zones (the inner an.. outer radiation zones, or the

Van Allen belts) of enhanced intensity in the distorted dipole magne-
tic field of the Earth. An overview of the radiation environment is
illustrated by the isoflux contour map of Figure 4-26, which was
constructed by compiling measurements of electrons with energies
greater than 0.5 MeV (Reference 31). The regions having omnidirec-
tional flux intensities greater than 106 electrons/cmZ.-sec are shaded
to show the two-belt configuration of the energetic electrons trapped
in the vicinity of the Earth.

There is abundant literature available on the electrons within the
Van Allen radiation zones. It has been well established that the
inner- and outer-zone electrons have remarkable differences in
temporal and spatial .luctuations. Figure 4-Z7 is an example of the
long-term obser-atiLa of the E a 0. 28-MeV electrons in the inner
zone over the period of more than 5 years, as recorded by satellite
1963-38C. The data are 10-dcy averages of the counting rate. The
main feature in the time-history profile is a steady monotonic de-
crease with time for L shells between L 1. Z to L = 1. 8, showing
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the decay of the artificial electrons injected by the Starfish detona-
tion in July 1962 (also see Sections 5 and 6). For the outer edge of
the inner zone, L = 2. 2, the flux enhancements associated with the
magnetic storms are clearly the dominant effect in the time history.
The greater the magnetic disturbances, as indicated by the magni-
tude of the Dst index in the bottom panel, the lower the L shells in
the inner zone that will be affected.

In contrast to this phenomenon in the inner zone, storm-related
enhancements are observed throughout the outer zone. Figure 4-28
shows this temporal behavior of the outer zone electrons as observed
by both the low-altitude 1963-38C data and the high-altitude Explorer
26 measurements. For L > 4, there is clear evidence of flux en-
hancements in each of the Dst storms, followed by a rapid decay to
the prestorm level.

The dynamic storm responses of the outer-zone electrons are
further complicated by other external effects such as diurnal drift-
shell splitting, the changing sectors of the interplanetary magnetic
field, and the injections and accelerations related to the magneto-
spheric substorms. The day-night differences in electron fluxes
can best be illustrated (Figilre 4-29) by the observation of the geo-
synchronous orbiter ATS I at L = 6.6 (Reference 3Z). The average
flux of electrons with E , 1. 05 MeV at local noon, for example, is
a factor of Z. 8 higher than that at local midnight. Electrons with

S..... energy lower than 1 MeV show slightly smaller diurnal variations.

The effect of substorms and the correlation of the outer-zone
electrons with the sector structure of the interplanetary magnetic
field are discussed in subsection 4. 3. 3, which also includes a dis-
cussion of the diffusion process.

In view of the marked differences in the characteristics of the
inner- and outer-zone electrons, the model environment of the
trapped-electron radiation in the two zones is presented separately.
Generally, these models are constructed by using time-averaged
fluxes measured by several satellites over a time period that covers
the epochs near both the minimum and maximum of the solar activity
cycle.

The well known solar-cycle effect on the trapped electrons has
been observed by many experimenters (Reference 35). Figure 4-30
is an example of the direct observation of OGO 1 and OGO 3 with
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similar spectrometers over two epochs. While the data show com-
paratively enhanced flux levels in 1967 as the r,olar maximum ap-
proaches, the slot between the inner and outer zones tends to shift
to lower L values as it is being filled. This effect can be summar-
ized by the data compiled in Figure 4-31, which shows the shifting
positions of both the slot and the peak of the outer zone over the
solar cycle, starting at the maximum in 1958,. In view of this pro-
nounced influence of solar cycle on the electron environment, the
modeling of trapped electrons described in the following subsection
is further subdivided into solar maximum and solar minimum epochs
for each radiation zone.

4.3.2 Electron Environment Models

In the original edition of Section 4, the AE 2 model was given as
a summary of the energetic electron radiation environment which
has served as a standard reference for many years. As improved
instrumentation and new data become available, it is necessary to
"update the environment models. In the last few years, the continued
effort of data compilation at NASA National Space Science Data Center
(NSSDC) has produced electron models AE 4, AE 5, and AE 6. It is
the purpose of this section to present the latest versions of these J
models for the inner- and outer-radiation zoneb. Because of the
previously noted differences in the behaviors between the inner- and
outer-zone electrons, the modeling of the electron environment has
been accordingly separated. Furthermore, the prominent solar-
cycle effects are accounted for by grouping the data with respect to
the time epochs of solar maximum and solar minimum. The follow-
ing electron environment models, currently available at NSSDC for
making estimates of future fluxes, are described in the following
sections:

Inner Zone Outer Zone

Solar Minimum AE 5 (Epoch 1975) AE 4 (Epoch 1964)
(Projected)

Solar Maximum AE 6 (Epoch 1980) AE 4 (Epoch 1967)
(Projected)

OUTER-ZONE MODELS. Because of the numerous temporal vari-
ations associated with the outer-zone electrons, a useful environment
model of the outer zone can be preseniLd with time-averaged fluxes.
Singley and Vette (Reference 36) constructed time-averaged flux
models, AE 4 Solar Max and AE 4 Solar Min, over the energy range

. . ""4-8
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of 40 KeV to 4. 0 MeV and L values from 3. 0 to 11. 0. They used
data from experiments on board the OGO 1, OGO 3, ERS 13, ERS 17,
Explorer 6, Explorer 1Z, Explorer 14, Explorer 18, Explorer 26,
Injun 3, and ATS 1 spacecraft covering the time period between
August 1959 to February 1968. The divisions of solar maximum and
solar minimum are designated by AE 4 (epoch 1967) and AE 4 (epoch
1964), respectively.

The B dependence and the local time dependence of the electron
fluxes are treated as independent functions. At each discrete L
interval, the flux is given as a function of magnetic field, B , and
local time, (p, by the function

/2! (•lB-m /cB Ccos (£'P B<

J K 0_ . (10) B <B

t (4-1)

=0 B>B

where

J is the omnidirectional integral flux in cm-n- 2 sec- 1

B is the local magnetic field in gauss

Bo is the equatorial magnetic field of the given L value

Dc is the cut-off magnetic field of the given L value

ýp is the local time in hours

and K, m, Cl, Q'I are the coefficients determined by least-squares
fits to various data sets. It should be noted, however, that mnost of
the data used in the determination of AE 4 were obtained near the
equator so that the B dependence at high B has not been as exten-
sively studied as at low B values. However, several recently ob-
tained data sets indicated reasonable agreement with AE 4 at inter-
mediate B values.

Comparisons of the AE 4 model spectra with data at several L
values are shown in Figures 4-32 and 4-33. In general, the spectra
for the epoch 1967 show higher fluxes of lower energy (E < Z.5 MeV)
electrons than those of the epoch 1964. It is noted, however, that
the data base for AE 4 is quite limited for threshold energies higher
than 2 MeV. At the end of this subsection, some recent data col-
lected by Azur and ATS 6 are introduced to supplement the AE 4
model.
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The values of the coefficient m for the B/Bo dependence are

shown in Figure 4-34. In determining the values of m, it was noted
that the data points at each L interval do not show much scatter, re-
flecting the uniformnity of the dependence of B/B 0 for various ener-
gies and time epochs (Reference 36). The Bc values of the model
were chosen to be 0. 58 gauss for L = 3. 0 and approximately 0. 6
gauss for higher L shells, assuming the minimum mirroring alti-
tude of energetic electrons at 200 kilometers.

One can consider the dependence on local tirne in Equation 4-1 by
defining

W- Co W l0 (4-2)

which gives

iLog W = C Cos[Tr (P0-(P1)J (4-3)

Figure 4-35 illustrates the observations of the variation of log W
for the electron fluxes above two threshold energies. For L less
than 5.0, the local time variations are small compared to the other
uncertainty factors of the model. However, for L values greater
than 5.0, the amplitudes of the local time fluctuations increase very
rapidly with increasing L, peaking between 0900 and 1200 local time,
depending upon both energy and L shell. For 40-KeV electrons at
L = 8, the maximum flux near local noon is more than one order of
magnitude higher than the minimum flux near local midnight. This
large variation in flux associated with the local time is based upon
the solar minimum data. As the epoch approached solar maximum
in 1967, this local time variation was found to be substantially re-
duced. The Explorer 12 data of 1962, Explorer data of 1963, IMP I
data of 1964, ERS 13 data of 1964, ERS 17 data of 1965, and ATS 1
data of 1967 shown in Figure 4-36 indicate the trend of this change.
The AE 4 model, therefore, is composed of two different model
dependences for solar minimum and solar maximum, as shown in
Figures 4-37 and 4-38, respectively.

With the description of B/Bo and local time dependence given in
the preceding paragraphs, AE 4 now can be presented as time-
averaged equatorial oinnidirectional flux J(E, L) as a function of
threshold energy and L value. Figures 4-39 and 4-40 show the

4'-!
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AE 4 radial profiles for the solar minimum (1964) and the solar
rnaximrnum (1967) epochs, respectively. Note that the outer-zone
peak is located at a lower L value near solar maximum (1967) than
near solar minimum (1964), consistent with the observation of Vernov
et al. (Reference 35).

Since the outer zone electrons undergo large variations with time,
it is useful to provide statistical information regarding these varia-
tions in addition to the average flux values. AE 4 represents these
statistical variations by means of a log-normal distribution. In this
model, the variations about the average are evaluated using the

*. standard deviation, a(E, L). Quantitatively, one hao

P(J>Ji) exp ZJ L]dl (4-4a)

log J1

where the integration variable is

Z = log [J(>E,B,L,o,t)3 , (4-4b)

and

X = log [Javg.(>E,B,L,p,t)3 -1. 15 Ca2 (E,L) (4- 4 c)

The curves of Figures 4-41 and 4-42 give the standard deviation
of the model as a function of threshold energies and L values, re-
spectively. Below L = 5, the standard deviation changes slowly with
energy, with the high-energy electrons having slightly .igher stand-
ard deviation than the low-energy electrons. Above L = 5, the stand-
ard deviation of low-energy electrons fluctuates greatly, which is
consistent with the previous observation of large local-time fluctua-
tions for the electron fluxes at large L values.

Because of the considerable spatial and temporal variation in the
outer-zone electron fluxes, the environment model AE 4 Is frequently
tested against new data. Figure 4-43 shows three panels of data
comparing the solar maximum AE 4 (1967) model with the E > 1. 5-

* MeV electron data from the Azur omnidirectional measurements in
November--December 1969 for L = 3.0, 4.0, and 5.5. As expected,
the scatter of data points increases with the L values. The mean
flux for the B interval between 0. 14 and 0. 16 gauss is narked by
an open triangle in each panel. Note that the Azur fluxes are higher
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than the AE 4 fluxes for L = 4. 0 and 3. 0, but lower than the model
for L , 5. 5. For B values greater than 0. 3 gauss, however, the
Azur measurements show a steeper cutoff than the AE 4 model in
all L shells. In general, these new data are within the uncertainty
limit of the model, which is estimated to be about a factor of two.

Another example of the model comparison with some recent equa-
torial measurements by the ATS 1 and ATS 6 (Reference 37) satellites
is shown in Figure 4-44. The OO 1, OGO 3, and the ATS 1 (1967)
data used in the model construction at L = 6. 6 are presented as ref-
erences. For energies below 2 MeV, the model essentially agrees
with the 1974 observation. At 4 MeV, the ATS 6 flux is substantially
higher than that predicted by the model. A similar comparison has
been observed at L = 4. 0 between the model spectrum and the Azur
measurement shown in Figure 4-45, which is derived from the quiet-
time spectrum published by I-I9usler and Sckope (Reference 38). It
is apparent that the Azur flux at E > 4 MeV is also larger than the
model estimate near the center of the outer radiation zone.

Details of the discrepancy between the AE 4 model radial profile
and some high-energy measurements by the OV1-19 satellite are
shown on Figure 4-46. The preliminary estimates of the OVI- 19
data between March 1969 and January 1970, excluding the period of
two major Dst storms in May and October, were provided by Vam-
pola (Reference 39). For E ; I MeV, the data are within the model
uncertainty limit of a factor of two. For E > 4 MeV, the data are
an order of magnitude higher than the model.

Results of these observations, quoted in the preceding paragraphs,
suggest that the flux estimates of the AE 4 model for E> 2. 5 MeV
are significantly lower than the new data. Further data analysis is

underway and the AE 4 model will be updated accordingly.

INNER-ZONE MODELS. The natural environment of the inner-
zone electron radiation was complicated by the artificial injection of
the Starfish detonation in July 1962. These fission injections per-
sisted in the inner zone for several y-ars and have been well docu-
mented (see Section 6). The population of these artificial electrons
has decayed continuously, and after 1970 it became insignificant
compared to the natural environment.

Since the data available for modeling were collected during peri-
ods up to 1967, the measured fluxes contained substantial contribu-
tions from the Starfish electrons. Therefore, the inner-zone models
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for the 1964 and 1967 epochs (Reference 40) included the artificial
electron fluxes.

"For making estimates of the future radiation environment, two

projected inner-zone models, AF 5 (1975) (Reference 41) and AE 6
(Reference 42), have been generated for solar minimum and solar
maximum, respectively, using an empirical Starfish model (Refer-
ence 43) to subtract the artificial fluxes from the 1964- 1967 data.
The derivation of these two projected models can be illustrated by
the equatorial radial flux profiles in Figures 4-47, 4-48, and 4-49
for threshold energies of Z50 KeV, 500 KeV, and I MeV, respec-
tively. The model flux of AE 5 (1967) is based upon the data from
five satellites: OGO 1, OGO 3, 1963-38C, OV3-3, and Explorer 26.
On Figu'es 4-48 and 4-49, the dotted curves show the effect of the
corrections to the 0V3-3 data resulting from changes in the esti-
mated detector efficiency that were made after publication. The
shaded areas in Figures 4-47 through 4-49 show the contribution of
the Starfish electrons to the AE 5 (1967) electron fluxes. The dif-
ferences between the AE 6 and AE 5 (1975 projected) curves result
from the effects of the different phases of the solar cycle.

h Estimates of the Starfish components in the flux data were calcu-
lated with the decay time and cutoff time determined by Teague and
Stassinopoulos (Reference 43). The Starfish flux and decay time
model was developed by separating the observed fluxes into naturally
occurring fluxes and Starfish electrons. Assuming an exponential
decay for the Starfish residual, some quiet-time data from 1964 to
1967 have been analyzed by an iteration process to produce time
profiles of flux components and a self-consistent model of decay
time. An example of the iteration procedure result is shown on
Figure 4-50 for L = 1.5 and 1.9 with'the OGO 1 and OGO 3 data.
From the apparent solar-cycle variation in the reduced-time pro-
files of the ambient flux components, a solar-cycle parameter,
RI , has, been estimated for each threshold energy and L value in
the inner zone, using the October 1967 flux level as a standard ref-
erence. Figure 4-51 is an example of the parameter RT, which is
dtefined as the ratio /

RT = J(E, LT = October 1967)
J(E,L, T)

where T is the number of months counted from September 1964.
For E> 500 KeV, the solar-cycle variation is largest at L = 1.8
where the variation is substantially larger than at lower or higher
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L values. With these values of RT and the Starfish decay model,TI
an environment model free from artificial fluxes was constructed
for the solar minimum in 1975. In a similar fashion, the solar
maximum environment model (projected for 1980) AE 6 was de-
rived from the reference model flux of AE 5 (1967) by subtracting
the Starfish component.

Because only the natural radiation environment will be considered

in practice, only the Starfish-free models are presented in the fol-
lowing paragraphs. The original model documents should be re-
ferred to for data analysis details.

In the graphic presentation of the AE 5 (1975) and AE 6 models,
a new form of computer -generated nomograph has been made to
provide easy scaling in engineering application, Examples of the
flux maps with the B-L coordinates are shown on Figures 4-5Z and
4-5 3. Note that the omnidirectional integral flux is higher in AE3 6
than in AE 5 (1975), but the B dependence is essentially the same

at most of the L values.

The accuracy of the models depends upon the particle e-nergy and
B-L coordinates under consideration. in the inner-zone models,
AE 5 and AE 6, the expected model accuracy is represented by con-
fidence codes. These codes have integer values from 1 to 10, cor-
responding to the model uncertainties from a factor in excess of 10
to a factor of 2, respectively. Tables 4-1. and 4-Z give these confi-
dence codes for AE 5 (1975) and AE 6, respectively.

Since the two inner-zone models presented herein are projectad
models, the data used for model construction cannot be directly
compared with the model curves without modification. However, a
display of the data used for modeling and some new observations
against the model spectrum will be indicative of the development
trend of the inner-z,..ne environment. Figures 4-54 and 4-55 are the
examples of the time-averaged data from five satellites at L =1.4
and 1. 6, respectively. The reduced data points of OGO 1, OGO 3,
and 0V3-3 have been used in deriving the models. The OGO 5 and
OV 1- 13 points are measurements taken in 1968, which is near the
solar maximum. The model curves for solar maximum epochs are
shown by the solid lines.

As described previously, AE 5 (1967) is the model that includes
substantial Starfish electrons and AE 6 is the projection model (1980)
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Table 4-1. Omnidirectional flux confidence codes for AE 5 (1975 projected).
-(Values 1 through 10 indicate uncertainties ranging from a factor

of >10 to a factor of 2.)

Code L Range E Range Remarks

1 <1.25 :3 MeV Extrapalation on B, L, and E

4 t1. 3  k3 MeV Extrapolation on E and B

5 1.3-1.6 0.5-3 MeV Starfish modei used to estimate arti-
ficial flux

Agrees with pre-Starfish data at

E - 1.6 MeV

5 1.9-2.4 >250 KeV Storm effects.
Co, rected for 0V3-3 data

6 1.3-1.9 0.7-2.5 MeV Corrected for 0V3-3 data

6 1.9-2.4 40-250 KeV Solar-cycle parameters used

7 1.6-1.9 40-600 KeV Solar-cycle parameters used

8 1.3-1.6 40-500 KeV Solar-cycle parameters used

Table 4-2. Omnidirectional flux confidence codes for AE 6. (Values 1 through

10 indicate uncertainties ranging from a factor of >10 to a factor
.• ........ of 2.)

Code L Range E Range Remarks

1 <1.25 2:3 MeV Extrapolation on B, L, and E

3 ki.3 ýt3 MeV Extrapolation on E and B

5 1.3-1.6 0.7-3 MeV Starfish model used to estimate
artificial flux

5 1.9-2.4 >250 KeV Storm effects.
Corrected for 0V3-3 data

6 1.6-1.9 0.7-3 MeV Minor adjustment for Starfish flux

6 1.9-2.4 <250 KeV Some storm effect

9 1.3-1.9 250-700 KeV Minor modification with respect to
AE 5 (1967)

10 1.3-1.9 <250 KeV Same as AE 5 (1967)
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after the subtraction of the Starfish component. The difference be-
tween these two models, i. e. , the Starfish component, is larger at
L : 1.4 than at L - 1.6 be.hause the former is closer to the location
of the electron injection in July 196Z. The dominant effect of the
Starfish electrons is most obvious in the OGO 1 data of 1964, which
is near solar minimum. For ,.qrlies above 0.4 MeV, the flux level
of the OGO 1 measurement, which is mainly Starfish flux, is substan-
tially higher than the fluxes observed by other satellits in 1966 and
1968, masking the solar-cycle effect. For energies below 0.4 MeV,
however, the OGO 1 result is found to be lower than the observations
near solar maximum, showing the trend of solar-cycle variation.

According to the study of Teague and Stassinopoulos (Reference
43), the comnplication of artificial electron fluxes became insignifi-
cant by. 1970. An improved inner-zorn: model of the natural radia-
tion, therelore, can be constructed when data from the years after
1970 are available.

AN OVERALL VIEW OF THE ELECTRON ENVIRONMENT. As
described in the two preceding subsections, different data analysis
techniques have been employed to develop the outer -zone and inner-
zone models. These radiation-zone models have been further sub-
divided to represent the conditions in the epochs of solar maximum
and solar minimum. Quantitative details of the combined results
over the two zones have been documented in each of the original
publications, It is sufficient, here, to summarize the modeling
effort by a sample radial profile. Figure 4-56 shows the overall
equatorial omnidirectional flux curves for the E > 0. 5 MeV electrons.
The inner-zone and outer-zone models have been combined here. It
is interesting to note that most of the solar-cycle variations in the
flux levels are found in the L range between 1. 5 and 5. 0. The lack
of obvious solar-cycle variation outside this L range can be attri-
buted to the effect of the dominant short-term variations, such as
substorms, in these regions; the short-term variations have been
smoothed out in the time-averaging process of modeling.

Another useful estimate of the radiation environment is the orbit-
integrated fluxes (1-day fluences) (see Section 8), which are obtained
by accumulating the electron doses by "lflyingt" the orbiter at various
altitudes and inclinations in the model environment. Detailed results
are available in the original model documents. As an example, Figure
4-57 is a graphical presentation of the fluxes as a functio.n of altitude
for the E > 0. 5-MeV electrons integrated over circular orbits with
inclinations at 30 degrees and 90 degrees. Again, both inner-zone
and outer..zone models have been included in the calculation.
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4.3.3 Possible Sources, Losses, and Transport
Mechanisms of Trapped Electrons

The electron flux enhancements caused by magnetic storms and
the subsequent decay have been shown by the long-term variations
(in days) of the 1963-38C data in subsection 4. Z. 1. The short-term
particle enhancements (in hours or minutes) associated with sub-
storm injections near local midnight, followed by gradient drifts,
have been observed by the ATS I spectrometer (Reference 44). For
each event shown 3n Figure 4-58, a cloud of enhanced electron flux
observed on ATS I was correlated with a magnetic bay in the mag-
netogram recorded by a ground station near local midnight. The
local times of ATS I and the ground stations are shown by the dia-
gram insets. The farther east ATS I is from local midnight, the
longer the delay between the flux maximum and the magnetogram
bay minimum observed, consistent with eastward gradient drifts of
electrons injected near local midnight. These results have been
confirmed by the high-resolution data of the later satellite, ATS 5
"(Reference 45).

The observation of gradient drift, for example, demonstrates the
success of the adiabatic invariant theory. As seen in earlier sub-
sections, the adiabatic theory has also provided a proper frame of
coordinates to obtain a quantitative description of the time-averaged
configurations of the geomagnetically trapped electrons. However,
in the interaction between the electrons and the external medium or
field, the theory of adiabatic invariants is often violated. The
breakdown of the adiabatic invariLnts, discussed in more detail in
Section 5, is believed to be associated with observed particle injec-
tions and losses. The dynamics of these interaction processes,
such as Coulomb scattering in the atmosphere, radial convection
caused by the dawn-dusk electric field, and the pitch-angle diffusion
induced by the electromagnetic waves, are the main ingredients of
the recent diffusion theories.

For L values below 1. 25, the atmospheric Coulomb scattering is
the dominant loss mechanism. The observed decay-time constants
for electrons in the energy range between 0. 3 to 5 MeV, as shown
on Figure 4-59, are found to be quite consistent with the predictions
of the theory of atmospheric collisions (Reference 46; also Section 5).
Because of the decreasing density of the atmosphere with increasing
altitudes, the observed electron decay for L> 1. Z5 cannot be ac-
counted for by the mechanism of Coulomb collisions. Beyond L
1. 5, the apparent lifetime of the electrons decreases as L increases.
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Now, it is generally accepted that the apparent lifetime profile for
higher L values in the radiation zones is produced by two intimately
coupled diffusion processes: an inward radial diffusion process,
which transports electrons across the drift shell; and a pitch-angle
diffusion process, which changes the mirror points of the particles
on a given field line. By lowering the particle mirroring point, the
electrons can be lost to the Earth's atmosphere. By transporting
particles inward from an external source, presumably from the solar
wind or plasma sheet, the electrons are accelerated and replenish
the losses caused by pitch-angle diffusion. (See Section 5 for a de-
tailed discussion. ) There are nondiffusion processes, such as
charge-exchange, which can be important to the trapped radiation
losses. To include these topics here is beyond the scope of this
section.

The interplanetary magnetic field (IMF) is another physical factor
which affects the trapped radiation dynamics. The correlation be-
twoen the magnetosphere physics and the IMF has been reported by
many authors. The trigger of a magnetospheric substorm is observed
to depend upon the length of time in which the IMBF turns southward
(Reference 47). Further observations of substorm-related processes
of energization and transport of the particles in the tr'apped region
have been described in detail (Reference 48).

One of the most recent observations of the association between the
IMF and the population of trapped electrons is shown in Figure 4-60
(Reference 49). Using the ATS 1 and ATS 6 electrons recorded in
the autumn of 1974 and in the spring of 1975, Paulikas and Blake
(Reference 49) found a modulation in the flux intensity that is cor-
related to the IMF sector structure. As shown on both panels of
Figure 4-60, the enhanced flux intensities (shaded) occur when the
Earth is in a (+) sector of the IMF during northern hemisphere au-
tumn and when the Earth is in a (-) sector of the IMF during the
spring months. This observation has been interpreted as evidence
of the enhanced interaction between the solar wind and the magneto-
sphere when the latter is immersed in a southward-pointing IMF,
in agreement with other phenomenological studies quoted in the pre-
ceding paragraphs.

4.3.4 Recent Observations of Low-Energy
(E < 40 KeV) Electrons

With the new generation of satellite-borne instruments that pos-
sess adequate sensitivities in the energy range from approximately
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1 eV to 40 KeV, an abundant wealth of important knowledge of low-
energy electrons has been obtained during the last few years. A
comprehensive survey of the recent progress on this topic has been
reported by Frank (Reference 50). Of particular interest in the new

obser'.ation is the striking occurrence of a local peak at about 3 KeV
in the otherwise monotonic differential energy spectrum. This pat-
tern of low-energy electron fluxes is usually observed near the trap-
ping boundary of 40-KeV electrons and is called "inverted V" sub-
structure because of its appearance on an energy-time spectrograxn.
Such an example of the Injun 5 spectrum is shown on Figure 4-61.
The solid line that goes through the data points is a model spectrum
computed by assuming an initial Maxwellian electron distribution

with a 400-volt electric potential difference along a magnetic field
line 'Reference 51). The consistency between the data and the model
computation gives strong evidence that the magnetospheric electric
field plays a dominant role in the dynamics of low-energy electrons.

The average morphology of low-energy electrons ha's been mapped
by McDiarmid et al. (Reference 5?.). using data from about 1, 100
passes of the polar-orbiting ISIS 2 satellite. Figure 4-6Z is a semi-
schematical diagram of the location of peak fluxes and corresponding
energies mapped to the equatorial plane. The contours shown by
heavy lines are the peak flux contours with energies given in KeV
units. The local times of the minima in average energy near the
closed-field-line limit are marked. The pattern shown by the lighter
lines is the model electric potential (Model E3H) of McIlwain (Ref-
erence 53), which is derived from the low-energy particle measure-
ments of the ATS 5 satellite near the equatorial plane. Qualitatively,
this composite map suggests that two processes might be involved in
the entry of magnetosheath particles into the closed-field-line region:
a convection process responsible for the premidnight entry, energiza-
tion, and subsequent flow through the magnetosphere; and a diffusion-
like process responsible for the entry around 1500 and 0300 local mean
times (LMT) with appreciably less acceleration than the premidnight
admission. As expected, this reported behavior of low-energy elec-
trons using average fluxes might have included the penetration of the
structured cleft-electrons from the magnetosheath observed by Heik-
kila and Winningham (Reference 54).

The importance of low-energy (E < 40 KeV) electrons in the radia-
"tion environment has been specifically emphasized by Rosen (Refer-
ence 55) in a study of the problems of spacecraft charging and high-
voltage arcing. For a synchronous satellite, in particular, the space
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vehicle was observed to charge to potentials as high as 10 KV (Refer-
ence 56) by the bombardment of the 3- to 20-KeV electrons injected
during a substorm. The implication of this potential environmental
hazard in the Earth's vicinity has become increasingly important for
future designs. More study is required to produce the needed environ-
ment model of the E < 40-KeV electrons. Further details of this sub-
ject are beyond the scope of the present section.

4.4 MAGNETOSPHERICALLY TRAPPED IONS
WITH Z z 2

4.4.1 Energetic Ions-Alpha Particles with
E > 100 KeV

The presence of trapped ions heavier than protons in the radiation
belts has been well established by several experimenters. For a re-
cent review, see the article by West (Reference 10). The most exten-
sive observations have centered on alpha particles (References 57
through 60), although the medium nuclei (CGNO group) also have been
observed (References 60 through 63). The motivation for these ef-
forts results from the insight to be gained concerning the trapped
radiation dynamics (References 64 through 66).

Alpha particles have been observed from L - 1. 6 to greater than
5, with energies between 0. 85 and 9. 0 MeV. The presence of still
higher energy alphas within the inner zone is implied by the hard
spectra shown on Figure 4-63 (Reference 67). Differential energy
spectra are given for L values between 1. 5Z5 and 2. 125, with 11/o-
1, 3. In the outer zone, the spectra are much softer in the same en-
ergy range shown i.n Figure 4-64 for 13 i 0. 1 gauss (Reference 57).

The nature of the alpha particle population appears to change
rather abruptly near L 7- Z, as shown by the B-L plots of Figure
4-65. This figure shows count rate contours for three energy inter-
vals between Z. 15 and 9. 0 MeV in the inner zone and several corre-
sponding count rate contours for four energy intervals between 0. 85
and 5. 55 MeV in the outer zone. A sharp bend in the contours near
L 2 2 is apparent. To convert from counts-per-second to flux
(rx-particles/cm 2 -_Eec-ster) in a given energy interval, multiply by:
470 for the 0.85- to 1. 5-MeV channel; 380 for the 1.50- to 2. 15-
MeV channel; 425 for the 2. 15- to 3. 55-MeV channel; 375 for the
3.55- to 5. 55-MeV channel; and 34Z for the 5.55- to 9.0-MeV chan-
nel (References 57 and 67). A final alpha particle B-L plot of flux
(CU-particles/cm 2-sec-ster) contours is shown on Figure 4-66 for
energies between 1. 18 and 8. 0 MeV in the outer zone (Reference 60).
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These contours differ somewhat from those shown on Figure 4-65,
, particularly for L values above 4. 0. This difference is not com-

pletely understood at the present time, but is presumably related to
a time variation.

j Observations in the outer zone near the geomagnetic equator have
been sparse. The Explorer 45 (S 3 ) satellite made the first observa-
tions in thi&,region. The radial profile count rate observed for alpha
particles between 0.91 and 2. 0 MeV is shown on Figure 4-67. This

j profile is sirmilar-to that observed for protons in the same energyper nucleon range, and the ratio of the alpha-to-proton fluxes is

found to be approximatvly I 10-l (Reference 59).

This ratio is an order of magnitude or more larger than that ob-
served for alpha particles mirroring at large distances from the
geomagnetic equator. Typical values at low altitudes are approxi-
mately 10-4 for energies above 0. 5 MeV per nucleon and approxi-
mately 10-3 for energies above 0. 25 MeV per nucleon. The L de-
pendence of this ratio at these altitudes is shown on Figure 4-68 for
energy intervals between 0. ZIZ and 4. 5 MeV per nucleon (Reference
58). There is some peaking of the ratio at low L values and low
energy per nucleon, which is related to the peaking in the proton
energy spectrum near 300 KcV.

The alpha-particle flux has been seen to undergo considerable
time variations, especially during some storms. Figure 4-69 (Ref-
erence 60) covers the time period from September 1968 to May 1970
at L -- 3.05 and 13 B. 0. 19 gauss. Daily averages of the proton (0. 31
to 45 MeV) and alpha-particle (1. 18 to 8. 0 MeV) fluxes, as well as
the ratio JtI/Jp, are plotted together with the indices ])st and rl~p.
The triangles indicate the times of sudden commencements. Note
the large response to the storm on day 305, 19C8, in which the alpha
fluxes increased about a factor of 100 while the proton fluxes increased
about a factor of 10. Both subsequently decayed with time constants
near 40 days. However, a larger storm on day 83, 1969, had no ap-
parent effect on these fluxes.

Alpha-particle distribution functions are seen to increase with in-
creasing L value through L - 4, which indicates the source lies beyond
this L value (References 58 and 60). Possible source mechanisms
include the polar wind, solar wind, and direct capture of solar-flare
particles. Observations supporting the direct capture mechanism
have been reported (Reference 68). Other observations and theories
indicate that this mechanism might be limited to special circumstances
and, thus, favor either the solar or polar wind (Reference 60).
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4.4.2 CNO Nuclei with E> 100 KeV

The observation of the medium (GNO) nuclei and, particularly,
the determination of the O/C ratio, might make it possible to iden-
tify the major source of magnetospheric particles. Trapped Z z 3
nuclei (most probably CNO nuclei) at approximately 0. 3 MeV per
nucleon have been reported (Reference 69). The CNO to He flux ratio
is 2. 8 ± 0.5 X 10-3 with L in the 3 to 3.5 range and B in the range of
0. 15 to 0. ZO gauss. The separate identification of the carbon and
oxygen fluxes in the 3 to 5 L range for energies between 13 and 33
MeV per nucleon also has been reported (Reference 61). The aver-
age CNO flux is 9. 3 ± 3. Z X 10-4 Iarticles/cmz-sec-ster-MeV-
nucleon- 1 , or about 100 times the interplanetary CNO flux. The
abundance ratio is obtained as O/C - 0. 5 & 0. 4. This ratio indicates
an extraterrestrial source for the magneto spheric particles, such
as the solar wind. However, this might not be a definitive test be-
cause of the high energies involved (Reference 64).

4.4.3 Heavy Ions with E < 100 KeV

The composition of the magnetospheric ions in the important range
from a few KeV to a few tens of KeV, which contains the bulk of the
plasma energy, is still an open question. Most measurements in
this range were obtained with instruments incapable of identifying
the species of the ions being detected, and they were commonly re-
ferred to as "protons" by assumption only. Recent observations
raise doubts as to the general validity of this assumption. Measure-
ments of ions with energies up to ].2 KeV, using satellite-borne mass
spectrometers, have shown that 0+ is an important and sometimes
dominant component of the precipitating population during magnetic
storms (References 70 through 73). At times, lHe+ has been ob-
served to be prominent in the precipitating species (Reference 74).
Equatorial observations of the evolution of the pitch-angle distribu-
tions of ring-current ions during a storm recovery phase by Explorer
45 were interpreted as implying that the ring current ions at L 44
and energy 4 50 KeV are not primarily protons. He+ was suggested
as an alternative candidate (References 75 and 76), but this interpre-
tation was questioned (Reference 77) and the matter is still under
discussion (Reference 78).

A recently orbited mass spectrometer experiment on a spinning
satellite measured large fluxes [10 8 (cm 2 -sec-ster-KeV)" I of
0+ and H+ ions being accelerated upward, out of the ionosphere, at
altitudes between 5,000 and 8,000 kilometers, in the auroral and
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polar regions. These fluxes were interpreted as direct products of
an ionospheric acceleration mechanism (Reference 79), underscoring
the importance of the ionosphere as a source of magnetospheric ions.
Despite these measurements, the lack of mass spectrometer obser-
vations at high altitudes in the equatorial plane still leaves open the
question of the composition of the trapped energetic ions which con-
stitute the ring current. Ilopefully, planned measurements on GEOS,

* ISEE (the International Sun-Earth Explorex), and EE (Electrodynam-
ics Explorer) will resolve this important issue.

4.5 SUMMARY

This section presents a brief review of the trapped radiation en-
vironment in the Earth's vicinity. Models of the proton and electron
environments in epochs of solar maximum and solar minimum are
described. Results of some updated data analysis are used to sup-
plement the electron models.

For both energetic protons (E > 100 KeV) and electrons (E > 40
KeV), the particle populations have been shown to exhibit a much more
dynamic behavior in the outer zone than in the inner zone. For par-
ticles of lower energies, the data are relatively new and no extensive
empirical model environment has been developed. Although the heav-
ier ion (Z t 2) fluxes with E > 100 KeV have been found to be two and
more orders of magnitude below the proton fluxes, their observation

Sshould provide a better understanding of the trapped radiation dynamics.

Much work is still needed to establish the major source and loss
processes, and to include the significant temporal variations in the
empirical models.
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Figure 4-8. Radial diseributions of AP8MIN omnidirectional fluxes of plotons in
the equatorial plane with energies above threshold values between
0.1 and 400.0 MeV (Reference 12).
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Figure 4-9. Integral spectra of AP8MIN omnidirectional fluxes of protons for
various values of B at L =1.2 (Reference 12).
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i'igure 4-10. Integral spectra of AP8MIN omnidirectional fluxes of protons for

various values of' •t L = 1.5 (Reference 12).

14-40

L),
-" ,::•;t;•• : ' '" ',. cc.•.!•.• ;i':,;:;F .... . H-

"•;,'• i:" "' • ...

-•~~~ '• -too,!.¢; ?• 1 ,,.

•'ff" i - -...... 
ft,• . 1. 1.... .0,, • •. -•, : .•. ... . ,. ,



'I

4 January 1977

"FLUX VS. ENERGY OISTHRIBU TION5
108-: 1 O --- •--'•'-'•'--'- i ---- ........ --t-•--•-r--r-r-T-•r-..... .. -- - --r--" -r- -,--" r-r-rr ......- -• -- -• ••

E3/BO L= 2. 00
1.00

LU +E07 0. 0390
U) 10--

1.00

UI)

1 5+ +

Lfl

Sz)103 + + 4-

><10L1 .j.

K, 1--, O

-~ ~ 7.20

01
z- i, 7--'--'-'--I

1- 102

C-)LLJ

IOU

10-1 lo lo, I o0 ,0

PROTON ENERGY (MEV)

Figure 4-11. Integral spectra of AP8MIN omnidirectional fluxes of protons for
various values of B at L 2.0 (Reference 12).
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Figure 4-12. Integral spectra of APBMIN omnidirectional fluxes of protons for
various values of B at L 2.5 (Reference 12).
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Figure 4-13. Integral spectra of APBMIN omnidirectional fluxes of protons for
various values of B at L 3.0 (Reference 12).
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' ~Figure 4-14. Integral spectra of APOMIN omnidirectional fluxes of protons for
various values of B at L =4.0 (Reference 12).
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Figure 4-16. Integral spectra of AP8MIN omnidirectional fluxes of protons for
various values of B at L =6.6 (Reference 12).
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Figure 4-22. Time behavior of low-energy protons at L 4.0. The curves are
displaced lo ovoid overlap, and values for curves A to H must be
multiplied by 10 raised to the exponents: -1.25, -1.00, -0.75,
-0.50, -0.25, 0.25, 0.25, and 0.25 to obtain the integral inten-
sity (Reference 20).
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Figure 4-24. Differential spectra of directional proton fluxes over the energy
range of 200 eV -• E :ý 1 MeV mirroring at the magnetic equator
as compiled from observaiions with OGO 3, Explorer 12, and
Mariner 4. The ordinate scales for the proton spectra at L = 4.0,
5.0, and 6.0 have been displaced by factors of 10, as noted on
the left ordinate scvle (Reference 28).
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Fi0ure 4-30. Equatooal radial profies of OGO I and OGO 3 data, showing
the solur-cycle effect (Reference 36).
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Figure 4-37. Logarithmic presentation of AE 4 local time model for epoch 1964,
threshold energy 0.5 MeV (Reference 36).
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Figure 4-39. AE 4 radial profile of equatorial omnidirectional
flux for venious energy thresholds, epoch 1964
(Reference 36).
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Figure 4-4. Comparison of AE 4 model electron spectrum with various data at

L 6.6.

4-74
.•_..

.______________o



4 January 1977

Cm•k Of OWe AI-4 isod" S •eih M OAz-DA

0 A;ur hNov Doc 1960)
•' L •4OR#

a - 0 14 GaIuss AE-4

0

0

- II '

10, I I I I I I I , I I

1.0 1.5 2 2.5 3 4 5 6 7 4 9 1o

Thi iMd (Me -V)

Figure 4-45. Comparison of AE 4 model spectrum with Azur data at L 4.0 ar.JB 0.O 14 gauss.
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Figure 4-46. Comparison of AE 4 radial profile with OVI-19 data at B 0.05 gauss.
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Figure 4-47. Model radial profiles for 250-KeV electrons in the inner
zone. The difference between AE 6 and AE 5 (1975) is
the solar-cycle effect. The difference between AE 6
and AE 5 (1967) is the Starfish electrons (Reference 42).
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Figure 4-48. Model radial profiles for 500-KeV electrons in the inner
zone (Reference 42).
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Figure 4-49. Model radial profiles for 1-MeV electrons in the inner
zone (Reference 42).
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Figure 4-51. Ratio, RT , of the integral flux (E > 500 Key) in October 1967

to the correspo~nding flux in various phases of the solar cycle.
T is the number of months Counted from September 1964

I,
(Reference 40).
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Figure 4-52. Nomograph map for AE 5 (1975) model fluxes of electrons with
E > 500 KeV (Reference 40). This multidimensional nomograph

presents the model flux as abscissa and the independent variables
B and L as ordinates. Curves of constant B and L are plotted.
The abscissa scale is shown as powers of 10 and the scale incre-
ments of the ordinate are given by AB (gauss) and AL (RE) for B
and L, respectively. The model flux for a given (B, Q) point can

be determined by the abscissa value of the intercept of the cor-
responding B-L curves. Interpolation of high accuracy can be
obtained from the figure. Consult the source reference for details.
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Figure 4-53. Nomograph map for AE 6 model fluxes of electrons with E > 500
KeV (Reference'42). This multidimensional nomograph presents the
model flux as abscissa and the independent variables B and L as
ordinates. Curves of constant B and L are plotted. The abscissa
scale is shown as powers of 10 and the scale increments of the ordi-
nate are given by AB (gauss) and &L (RE) for B and L, respectively.
The model flux for a given (B, L) point can be determined by the
abscissa value of the intercept of the corresponding B-L curves.
Interpolation of high accuracy can be obtained from the figure.
Consult the source reference for details.
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Figure 4-54. Comparison of inner zone model spectra with
various data at L - 1.4 (Reference 80).
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Figure 4-57. Orbit-integrated fluxes (1-day fluences) of >500 K.\' electrons as
a function of orbital altitude for inclinctions of 30 and 90 degrees.
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amplitude trace of the correlated ground magnetogram is also presented

for each event. The inset clock &Wýws the local times of the spacecraft
and the ground station pertaining to the event (Reference 44). A
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Figure, 4-61. Comparison of the Injun 5 electron spectrum with the model spec-

trum computed by assuming a 400-volt potnntial difference along a
magnetic Field line and an ambient Maxwellian electron distribution
of temperature of 800 eV and density of 5 cm- 3 (Reference 51).

"4-91



4 January 1977

06.00

MIIN AVE

ENERGENERGYIIk

1800 LOCAL TIME •

Figure 4-62. Composite map of low-energy electrons. Heavy lines give the locations '
of peak fluxes and energies projected onto the equatorial plane. The

lighter lines present the electric potential pattern of Mclllwain's model
E3H (Reference 52).
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Figure 4-63. Differential energy spectra of alpha particles at selec*ad
L values between 1.525 and 2. 125 plotted on the same
intensity scale for B/Bo = 1.3 (Reference 67).

4-93

.Al



4 January 1977

10 . IIi

B = 0.10 Gauss

L=2.5 L 2.7 L=2.9

10

\++

-4

-, 
\4 + -

100 J

i1 1 100 \\

Ea_ Mev

Figure 4-64. Alpha particle spectra (differential flux versus total
energy) for B = 0. 10 gauss and L 2.5, 2.7, and
2.9 (Reference 57).
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Figure 4-66. B-L contours of alpha particles with energies between 1. 18 and 8.0
MeV from 11 through 28 February 1970 (Reference 60).
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Figure 4-67. The radial profile of JC4 (0.91 < Eci < 2.00 MeV) inferred from the
response of the Acx2 channel (Reference 59).
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Figure 4-68. Average J /Jd versus L for five ranges of energy per
nucleon (t)h The ratios were obtained by averaging
together the ratios from several values of B/Bo at each L
shell. The error bars represent the standard deviation of
individual values from the average. E/A increases from
the bottom frame to the top frame (Reference 58).
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ATTN: Technical Rptu. Center (912 A816) ATTN. John B. Cladie, Dept. 52-12
ATTN: James W. Schsllau

lIT Research Institute ATTN: John E. Evans, Dept, 52-14
ATTN: Technical Library ATTNi G, H, Nakano, D/52-12, B/205
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